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Abstract We consider an asexual biological population of constant size N evolving in dis-
crete time under the influence of selection and mutation. Beneficial mutations appear at
rate U and their selective effects s are drawn from a distribution g(s). After introducing
the required models and concepts of mathematical population genetics, we review differ-
ent approaches to computing the speed of logarithmic fitness increase as a function of N ,
U and g(s). We present an exact solution of the infinite population size limit and provide
an estimate of the population size beyond which it is valid. We then discuss approximate
approaches to the finite population problem, distinguishing between the case of a single se-
lection coefficient, g(s) = δ(s − sb), and a continuous distribution of selection coefficients.
Analytic estimates for the speed are compared to numerical simulations up to population
sizes of order 10300.

Keywords Evolutionary dynamics · Wright-Fisher model · Clonal interference · Traveling
waves

1 Introduction

The foundations of mathematical population genetics were established around 1930 in three
seminal works of R.A. Fisher [19], J.B.S. Haldane [26] and S. Wright [62]. The achievement
of these three pioneers is often referred to as the modern synthesis, because they resolved an
apparent contradiction between Darwinian evolutionary theory, with its emphasis on minute
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changes accumulating over long times, and the then recently rediscovered laws of Mendelian
genetics, which showed that the hereditary material underlying these changes is intrinsically
discrete. Like Ludwig Boltzmann faced with the problem of deriving the laws of continuum
thermodynamics from atomistic models, Fisher, Haldane and Wright developed a statistical
theory of evolution to explain how random mutational events occurring in single individuals
result in deterministic adaptive changes on the level of populations. Not surprisingly, then,
statistical physicists always have been, and are now increasingly attracted to the study of
evolutionary phenomena in biology (see e.g. [4, 12, 18, 38]).

In this article we focus on a specific, rather elementary question in the mathematical the-
ory of evolution, which was posed in the early days of the field and remains only partly un-
derstood even today: We ask how rapidly an asexually reproducing, large population adapts
to a novel environment by generating and incorporating beneficial mutations. The question
originates in the context of the Fisher-Muller hypothesis for the evolutionary advantage of
sexual vs. asexual reproduction. Fisher [19] and H.J. Muller [42] pointed out that a disad-
vantage for asexual reproduction would arise in populations that are sufficiently large to
simultaneously accommodate several clones of beneficial mutants. In the absence of sexual
recombination, two beneficial mutations that have appeared in different individuals can be
combined into a single genome only if the second mutation occurs in the offspring of the
first mutant. This places a limit on the speed with which the population fitness increases in
the asexual population.

The first quantitative treatment of the Fisher-Muller effect was presented by Crow and
Kimura [8] for a model in which all beneficial mutations are assumed to have the same ef-
fect on the fitness of the individuals. They arrived at an expression for the speed of evolution
in asexuals which saturates to a finite value in the limit of large population size N → ∞,
whereas for sexual populations the speed increases proportional to N . This conclusion was
challenged by Maynard Smith [39], who showed (for a model with only two possible muta-
tions) that recombination has no effect on the speed of adaptation in an infinite population.
The resolution of the controversy [9, 17, 40] made it clear that the Fisher-Muller effect op-
erates in large, but not in infinite populations; a first indication of the rather subtle role of
population size, which will be a recurrent theme throughout this article.

Prompted by progress in experimental evolution studies with microbial populations
[2, 14, 27, 48, 52, 57, 58], the question of the speed of evolution in the setting of Crow
and Kimura has been reconsidered by several authors in recent years [3, 7, 10, 11, 50, 51,
64, 65]. Using a variety of approaches, they show that, rather than approaching a limit for
large N , the speed grows as lnN in the regime of practical interest, reflecting the increasing
spread of the population distribution along the fitness axis. Considerable efforts have been
devoted to deriving accurate expressions for prefactors and sub-asymptotic corrections. At
the same time more complex models that allow for a distribution of mutational effects have
been introduced and analyzed [20, 22, 45, 61].

The purpose of this article is to review these developments on a level that is accessible to
statistical physicists with no prior knowledge of population genetics. In the next section we
therefore begin by introducing the basic concepts and models, primarily the discrete time
Wright-Fisher model with mutations and selection. Section 3 is devoted to the dynamics
of an infinitely large population. In this limit the dynamics becomes deterministic and can
be solved exactly using generating function techniques. Although (as we will show) real
populations operate very far from this limit, the infinite population behavior serves as a
benchmark for the comparison with approximate results for finite populations, and it yields
the important insight that a large population can be described as a traveling wave in fitness
space [51, 55]. In Sect. 4 we review the main approaches to the finite population problem.
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We provide simple derivations of reasonably accurate expressions for the speed of evolution,
both for the case of a single type of beneficial mutations and for models with a distribution
of mutational effects, which are compared to stochastic simulations over a wide range of
population sizes. A preliminary view of the relationship between the two types of models
is presented. Finally, in Sect. 5 we summarize the article and discuss some related topics
which point to possible directions for future research.

2 Models

This section introduces the basic concepts and models studied in this paper. Models of evolv-
ing populations are based on three main features: reproduction with inheritance, natural
selection, and mutation.1 We describe each of these features from the point of view of sto-
chastic processes in discrete time. For ease of explanation, our description begins with the
branching process well-known in the statistical physics community.

2.1 Wright-Fisher Model

We consider here only asexual reproduction that is described by the number of offspring
that each individual produces. This number is different from one individual to another, de-
pends on many external events, and is thus described by a random variable. In the discrete
time branching process without selection, an individual at time (or generation) t is replaced
by nt+1 individuals at time t + 1 where nt+1 is distributed according to a law p(n) that is
the same for all individuals2 and is constant in time. The probability p(0) can be seen as
the death probability since the lineage of the individual disappears. The population is then
completely described by its total size Nt . This stochastic process is known as the Bienaymé-
Galton-Watson process and describes the growth and the death of a population without re-
striction on the size. Simple computations show that the average size grows as E(Nt) ∝ (n̄)t

where n̄ = ∑
n np(n) is the average number of children of one individual [16]. This sim-

ple system exhibits a transition to an absorbing (extinct) state as n̄ varies. When n̄ ≤ 1, the
extinction will occur with probability 1. On the other hand, if n̄ > 1, the population grows
exponentially with a finite probability. However, such a growth is not realistic because of
limitations of the amount of food or resources in the environment.

In order to take this saturation effect (or environmental capacity) into account, we de-
mand that the size of population remains constant, with a given value N . For generality, we
now assume the mean number of offspring for each individual i (1 ≤ i ≤ N ) to be wi in
the unrestricted growth case described above, and we allow the wi to be different from each
other. To make the discussion concrete, we choose a Poisson distribution for the number
of offspring of individual i, pi(ni) = w

ni

i e−wi /ni !. The reproduction mechanism at con-
stant population size can then be modeled by conditioning the total number of offspring
M ≡ ∑

i ni to be equal to N . The joint probability of the ni (without restriction) is given by

N∏

i=1

pi(ni) = e−Nw̄

N∏

i=1

w
ni

i

ni ! , (1)

1Other important features this paper does not consider are migration and genetic recombination.
2The fact that all individuals have the same distribution law implies the absence of natural selection.
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Fig. 1 A cartoon illustrating the
Wright-Fisher model for a
population of size N = 6 over
three generations. The arrows
indicate how an individual
‘chooses’ its parent

where w̄ ≡ ∑
i wi/N is the mean number of offspring per individual. The probability of

observing M = N is

P (N) = (Nw̄)N

N ! e−Nw̄, (2)

and, accordingly, the conditioned probability is given by (δ is the Kronecker delta symbol)

p(n1, . . . , nN |N) = δMNp(n1) · · ·p(nN)

P (N)
= δMN

N !
n1! · · ·nN !

∏

i

(
wi

Nw̄

)ni

, (3)

which is the widely-used Wright-Fisher (WF) model [19, 62]. It becomes then equivalent
to the following process: at time t + 1, each individual ‘chooses’3 its parent i at time t

with probability wi/(Nw̄); see Fig. 1 as an illustration. It is obvious that this scheme is not
affected by multiplying all wi by a common factor. Inheritance is modeled by conferring to
an offspring the same value of wi as its parent.

However, the inherited genetic material may go through copying errors (or mutations),
which can result in a child’s having different characters from its parent. In order to take into
account the effects of mutations, it is necessary to describe the characteristics of each indi-
vidual. Individuals are usually characterized by a set of parameters, the type (either the phe-
notype that describes their biological functions and their interactions with their environment,
or the genotype that specifies their heritable genetic material). A type is transmitted from the
parent to the children up to some changes due to genetic mutations. For our purposes, the
most important characteristic of an individual is its fitness defined as the average expected
number of offspring of this individual (even if, for a given realization of the process, the
effective number of offspring can be different because of the environmental capacity) in
the whole population. In the reproduction scheme described above the absolute fitness of
individual i is thus given by wi , the relative fitness by χi = wi/w̄, and the probability that
individual i is chosen as a parent in the WF-model is χi/N . Fitness differences in the pop-
ulation imply selection: individuals with large fitnesses tend to generate larger fractions of
the populations whereas lineages with small fitnesses tend to disappear quickly. We return
to the question of how fitness is assigned to individuals below in Sect. 2.2.

In the language of statistical physics, the WF model as defined above may be seen as a
mean-field model, because it does not take into account any spatial structure of the popula-
tion: any individual can be the parent of any other, without any consideration of distance.
This assumption is however realistic if one considers the mixing of real populations in a
not-so-large environment. The role of spatial structures in evolution has also been studied
for simple models, such as the island model [63] and the stepping stone model [33] which
incorporate migration. The present paper focuses on mean-field reproduction models.

3In reality, of course, a child cannot choose its parent, but this usage of the terminology has no mathematical
ambiguity and is widely used in the literature.
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The WF model assumes a complete replacement of the population by children in one
generation, i.e. generations do not overlap. A model with overlapping generations may be
defined by splitting the replacement of the population over a longer time. A frequently used
model that includes overlapping generations as well as a limited environmental capacity was
introduced by Moran [41]: at each time step, one individual chosen at random is killed and
replaced by the child of another individual chosen with probability χi/N . The time in the
Moran model is still discrete, although the dynamics is evidently close to a scheme where
single individuals are replaced in continuous time with rates proportional to the χi .

Both WF and Moran models have advantages and disadvantages. Unlike the WF model,
the Moran model is amenable to some exact analysis, see Sect. 4.1 for an example. How-
ever, with regard to computational efficiency, the WF model is superior to the Moran model
when simulating large populations. Since the conclusions relevant to biology are mostly in-
sensitive to model details, we will base our discussion on the discrete time WF model, and
comment on the corresponding continuous time or Moran model where appropriate.

2.2 Fitness Landscapes and Selection Coefficients

The main difficulty in modeling biological evolution within the framework described so
far is the choice of the functional relationship w(C) between the type C of an individual
and its fitness, referred to as the fitness landscape, which encodes in a single parameter the
complex interactions of a type with its environment [29]. At least two distinct approaches
circumvent this difficulty: one can either try to measure the function w(C) from experimental
data if the set of types is reduced [56], or choose the fitness landscape at random from
some suitable ensemble. In the last case, a widely-used further simplification consists in
describing the individuals only by their fitnesses and ignoring the underlying structure of
the types C ; mutations are then described only by changing the fitness of an individual by
a random amount. This can be justified if the number of types is very large, so that every
mutation effectively generates a new type that has never appeared before in the population.
In population genetics this is known as the infinite number of sites approach [35, 46], and it
will be used throughout this paper.

Each offspring has a probability U per generation of acquiring a mutation and this muta-
tion changes the parental fitness wi to the fitness w′

i of the offspring. In this paper, mutations
are assumed to act multiplicatively on the fitness wi and so the fitness w′

i after mutation is
given by

w′
i = wi(1 + s) (4)

where the selection coefficient s is a random variable with a distribution g(s). Mutations
with s > 0 are beneficial and those with s < 0 deleterious. Recall that if all the wi are
multiplied by the same quantity, then the relative fitnesses χi do not change, which justifies
the multiplicative action of the mutations4 [29]. One expects the relative fitnesses to reach
a stationary distribution at long times such that the average fitness w̄(t) will increase (or
decrease) exponentially with a rate referred to as the speed of evolution

vN = lim
t→∞

〈ln w̄(t)〉
t

, (5)

4An alternative scheme where the mutant fitness w′
i

itself is chosen at random was investigated in [46], see
Sect. 5 for further discussion.
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where the angular brackets denote an average over all realizations. This speed depends
on the population size N as well as on the mutation rate U and on the distribution g(s)

of the mutations. Two main contributions sum up to give the speed vN : the change of
mean fitness due to mutations and the selection pressure that selects individuals with larger
wi . For the WF model, these contributions are made explicit through a result obtained by
Guess [23, 24]:

vN = U

∫

ln(1 + s)g(s)ds +
〈

1

N

N∑

i=1

(χi − 1) lnχi

〉

stat

, (6)

where 〈·〉stat indicates an average over the stationary measure of the χi . The right hand side of
(6) is obtained by computing the change in mean fitness over two consecutive generations,
assuming that the initial fitnesses are drawn from the steady state distribution of the χi ’s.
The existence of a steady state is guaranteed by the renewal property of the process, which
reflects the fact that the population always returns to a genetically homogeneous state after
a finite time ∼ NN (see Ref. [24] for details).

The second term on the right hand side of (6) (which is always nonnegative) is related
to selection. It is also the difficult part to study since the stationary distribution of the χi is
generally unknown and hard to compute. If the distribution of relative fitness χi is concen-
trated around 1, the second term can be approximated by the variance of the distribution of
relative fitness. This result is reminiscent of Fisher’s fundamental theorem [19] which states
that the speed of evolution is proportional to the variance of the fitness distribution.

In the present paper the dependence of the speed of evolution on the distribution g(s)

of selection coefficients is a central theme. As it turns out that deleterious mutations do
not affect the adaptation of large populations when at least some fraction of mutations is
beneficial,5 only beneficial mutations (s > 0) will be considered in the following. The mu-
tation rate (per generation) U then refers to the rate of beneficial mutations, which is ex-
ceedingly small in natural populations: experimental estimates for bacteria range from 10−7

to 10−4 [27, 48]. The distribution of selection coefficients of beneficial mutations is very
difficult to determine experimentally, and the choice of a realistic form remains an open
question [15]. Moreover, the experimental determination of evolutionary parameters such
as the mutation rate U and the typical size of selection coefficients depends strongly on the
assumptions made about the shape of g(s) [27].

It has been argued that, because viable populations are already well adapted to their
environment, fitness coefficients associated with beneficial mutations occur in the extreme
high fitness tail of the underlying ‘bare’ fitness distribution, and therefore the shape of g(s)

should be given by one of the invariant distributions of extreme value statistics [30, 43].
Here we will consider two choices for this distribution. The first one (model I) describes the
situation where all mutations have the same selective strength sb ,

g(∞)(s) = δ(s − sb). (7)

The second class of distributions (model II) is supported on the whole non-negative real axis
and decays as a stretched exponential [10, 20],

g(β)(s) = (β/sb)(s/sb)
β−1 exp(−(s/sb)

β), (8)

5When all mutations are deleterious, the fitness decreases at constant speed and the problem is known as
Muller’s ratchet, see [28, 50, 51, 64] and references therein.
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where the factor (s/sb)
β−1 has been introduced for computational convenience. For β = 1,

one recovers the widely-used exponential distribution [22, 43, 45, 61], whereas for β → ∞
(8) reduces to (7). We note for later reference that the mean of g(β) is �(1 + 1/β)sb . Typical
values of selection coefficients obtained from evolution experiments with bacteria lie in the
range sb ≈ 0.01 − 0.05 [27, 48]. Thus both U and sb can be treated as small parameters,
with U � sb , in most of what follows.

3 Infinite Population Dynamics

This section studies the WF model in the infinite population limit which is described by a
deterministic evolution equation. Some of the material of this section is also found in the
online supporting information of [45]. Since it was shown in [45] that deleterious mutations
do not contribute to the speed in the infinite population limit, all mutations are assumed to
be beneficial in the following. The model will first be solved using a discrete set of fitness
values, and the transition to a continuous fitness space will be performed in Sect. 3.3.2.

3.1 The Evolution Equation and Its Formal Solution

Let ft (n, k) denote the frequency of individuals with n (beneficial) mutations and with fit-
ness eks0 at generation t ; here s0 > 0 and k is a non-negative integer. Note that ft (n, k) does
not discern different types which have the same number of mutations and the same fitness.
The restriction to fitnesses ≥ 1 is irrelevant due to the invariance of the dynamics under
multiplication of absolute fitnesses by a common factor. The mean fitness of the population
at generation t is

w̄(t) =
∑

n,k

eks0ft (n, k). (9)

If there are no mutations, the frequency at the next generation is given by

f̃t+1(n, k) = 1

w̄(t)
eks0ft (n, k), (10)

which is equal to the expected frequency at generation t + 1 for a finite population.
After reproduction, mutations can change the type of the offspring. With probability

U , mutations hit an individual and with probability 1 − U the offspring keeps the type
inherited from its parent. For simplicity, we assume that a single mutation occurs in a single
mutation event (see [45] for more general cases). For each mutation a positive integer from
a distribution g0(l) with strictly positive l is drawn and then the fitness of the offspring is
that of its parent multiplied by els0 . It is convenient to introduce the generating function of
g0(l),

G(z) =
∞∑

l=1

zlg0(l), (11)

with the normalization G(1) = 1. Including the effect of mutations along with the selection
step in (10), the frequency change becomes

ft+1(n, k) = (1 − U)f̃t+1(n, k) + U

k∑

l=1

f̃t+1(n − 1, k − l)g0(l), (12)
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which is the main equation to be analyzed in this section.
The generating function of the frequency

Ft(ξ, z) =
∑

n,k

ξnzkft (n, k) (13)

satisfies

Ft+1 (ξ, z) = Ft (ξ, zes0)

Ft (1, es0)
[1 − U + UξG(z)] , (14)

where we have used the relations

∑

n,k

ξnzkf̃t (n, k) = Ft(ξ, zes0)

Ft (1, es0)
, (15)

w̄(t) = Ft(1, es0), (16)

and the property of the convolution. Iterating (14) backwards until the initial time gives

Ft (ξ, z) = F0

(
ξ, zes0t

)

F0 (1, es0t )

t−1∏

τ=0

1 + uξG(es0τ z)

1 + uG(es0τ )
, (17)

where u = U/(1 − U). One can check that (17) solves (14) by substitution.

3.2 General Asymptotic Behavior

Using (16) and (17), the mean fitness at generation t becomes

ln w̄(t) = ln
F0(1, es0(t+1))

F0(1, es0t )
+ ln

(
1 − U + UG

(
es0t

))
. (18)

If initially there is a finite K0 such that f0(n, k) = 0 for k > K0, the first term arising from
the initial condition saturates and does not contribute to the speed in the long time limit.
On the other hand, if such a K0 does not exit, the initial condition can affect the fitness
increase indefinitely. For example, let f0(n, k) = δn,0e

−ηηk/k! with the generating function
F0(ξ, z) = eη(z−1). The first term on the right hand side of (18) then becomes η(es0 − 1)es0t

which does not allow a finite increase rate even in the absence of mutations. This is a pe-
culiarity of the selection dynamics in the infinite population limit and it is not difficult to
understand why this happens. Since the selection confers exponential growth to all types
with fitness larger than the average w̄(t) and there are always individuals of such types at
any generation t due to the unbounded initial condition, the mean fitness can grow indef-
initely without recourse to beneficial mutations. Because this is a rather artificial situation
which has no biological relevance, we assume the existence of K0 in what follows. Actually,
for simplicity the initial condition

f0(n, k) = δn0δk0, F0(z, ξ) = 1 (19)

will be used throughout this paper.
As t → ∞, the speed is determined solely by the generating function of beneficial muta-

tions. Let Kmax = maxk{k : g0(k) �= 0}, then due to the exponential growth of the argument
of G(es0t ) the speed for the infinite size population becomes

v∞ = Kmaxs0. (20)
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This shows that the mutation of largest effect governs the speed, which is not surprising
because genetic drift (a term referring to the stochastic loss of a beneficial mutation in a
finite population, see Sect. 4.1) is not operative. If we take Kmax → ∞ with s0 fixed, the
speed diverges. Note that the speed in the infinite population limit does not depend on the
mutation rate. It is only determined by the maximum value of the fitness increase by a single
beneficial mutation event.

Another peculiarity of the infinite population limit is the possibility that the fitness be-
comes infinite at finite time. If G(z) is not an entire function, the series defining the gener-
ating function has a finite radius of convergence, say R, beyond which the series diverges.
Hence when es0t > R or t > ln R/s0, the mean fitness becomes infinite. For example, let
g(l) = (1 − p)pl−1 which yield G(z) = (1 − p)z/(1 − pz) for pz < 1 and infinite other-
wise. Hence for t > − lnp/s0, the fitness becomes infinite. The radius of convergence for
this example is R = 1/p. Also note that the radius of convergence cannot be smaller than 1
because the generating function of probability is absolutely convergent for |z| ≤ 1 by defin-
ition. In the following, G(z) is assumed to be an entire function, that is, g0(l) is assumed to
decay faster than exponential in the asymptotic regime.

We now proceed to calculate the mean and variance of the number of accumulated mu-
tations in the infinite population limit. First, the mean number of mutations is calculated
as

n̄(t) = ∂

∂ξ
lnFt(ξ,1)

∣
∣
∣
∣
ξ=1

= t −
t−1∑

τ=0

1

1 + uG(es0τ )
. (21)

Since G(es0τ ) grows at least exponentially with τ , the second term approaches a finite value.
Clearly (21) gives the large population limit of the substitution rate k, defined here as the
infinite time limit of n̄(t)/t :

k = lim
t→∞

n̄(t)

t
= 1. (22)

The variance of the number of mutations reads

δn(t)2 =
(

ξ
∂

∂ξ

)2

lnFt(ξ,1)

∣
∣
∣
∣
ξ=1

=
t−1∑

τ=0

uG(es0τ )

[1 + uG(es0τ )]2
, (23)

which has finite limit as t → ∞.

3.3 Case Studies

Using the results presented above, we study the detailed evolution for two specific examples.
To begin with, Sect. 3.3.1 studies the simple case that g0(l) = δl1 which corresponds to
(7) with sb = s0. Then in Sect. 3.3.2 we generalize our solution to a continuous fitness
distribution such as (8).

3.3.1 The Case of a Single Selection Coefficient

When g0(l) = δl1, the calculation is rather straightforward. Because the number of mutations
fully specifies the fitness of a type, we replace ft (n,n) by ft (n) throughout this subsection.
From (18), the mean fitness becomes

ln w̄(t) = ln
(
1 − U + Ues0t

) ≈ s0

(

t − 1

s0
ln

1

U

)

= s0(t − t0) (24)
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with

t0 = 1

s0
ln

1

U
, (25)

which gives v∞ = s0. The mean number of mutations in the long time limit can be calculated
from (21) as

n̄(t) → t −
∞∑

τ=0

1

1 + ues0τ
≈ t −

∫ ∞

0
dτ

1

1 + ues0τ
= t − 1

s0
ln

1 + U

U
≈ t − t0, (26)

where we approximate the summation by an integral assuming s0 � 1, and U � 1. Not
surprisingly, s0n̄(t) ≈ ln w̄(t) in the long time limit. Likewise, the variance of the number of
mutations is calculated as

δn(t)2 →
∞∑

τ=0

ues0τ

(1 + ues0τ )2 ≈
∫ ∞

0
dτ

ues0τ

(1 + ues0τ )2 = 1 − U

s0
. (27)

Now we will show that the frequency distribution in the asymptotic limit can be approx-
imated by a Gaussian. From (12) with w̄ ≈ es0(t−t0), the frequency at generation t can be
approximated as

ft (n) ≈ ft−1(n)es0(n−(t−1)+t0)

≈ fn(n) exp

(

s0

t−n∑

τ=1

(n + t0 − t + τ)

)

≈ fn(n)es0t2
0 /2e−s0(n−t+t0)2/2, (28)

where n and t are assumed sufficiently large and we neglect the effect of mutations. Next
we show that fn(n) ≈ e−s0t2

0 /2 at long times, which concludes the demonstration that ft (n)

becomes Gaussian. Under the assumptions of our model the largest number of mutations
accumulated by an individual up to t is t , and from (17) the frequency of such individuals is

ft (t) =
t−1∏

τ=0

ues0τ

1 + ues0τ
. (29)

Since ues0t becomes larger than 1 at t ≈ t0, the term ues0τ in the denominator of (29) makes
a dominant (negligible) contribution for t > t0 (t < t0). Thus, we may approximate (29) in
the long time limit as

lim
t→∞ft (t) ≈ Ut0es0t0(t0−1)/2 ≈ e−s0t2

0 /2, (30)

which shows that ft (n) is well described by a traveling wave in the form of Gaussian.
The above consideration gives an interesting criterion for the population size beyond

which the infinite population dynamics becomes valid. If the population size is larger than

Nc ≡ exp(s0t
2
0 /2) = exp[ln2 U/(2s0)], (31)

the number of fittest individuals at a given generation is not smaller than 1 for all times t

(note that ft (t) is a decreasing function of t ). Since the selection coefficient of the types
with t mutations compared to the mean fitness is approximately es0t /w̄(t) − 1 ≈ 1/U � 1,
we can neglect the possible loss of such a type by genetic drift even if it is rare, which means



The Speed of Evolution in Large Asexual Populations 391

Fig. 2 (a) Frequency distribution of the infinite population dynamics for the case of g0(l) = δl1 with
s0 = 0.02 and U = 10−5. The distributions are shown at t = 1900 (left), t = 1950 (middle), and t = 2000
(right). The peak is located at t + (lnU)/s0 ≈ t − 575.65. (b) Plot of lnft (n) at t = 2000 as a function of n

in comparison to (32). Only a tiny deviation around n = 2000 is visible

that the infinite population dynamics describes a finite population with N ≥ Nc . To provide
an impression of how large Nc is, we choose typical values s0 = 0.02 and U = 10−5, which
gives6 Nc ≈ 101439.

To include the effect of mutations, we use (26) and (27) to write the frequency distribution
in the form

ft (n) ≈ 1√
2π(1 − U)/s0

exp

(

− (n − n̄(t))2

2(1 − U)/s0

)

, (32)

where the prefactor is fixed by normalization. Note that for sufficiently small U , (28) is
consistent with (32). Figure 2 compares the numerically obtained frequency distribution
with (32) for U = 10−5 and s0 = 0.02.

The idea that evolution can be described as a traveling wave moving at constant speed
along the fitness axis was first presented by Tsimring et al. [31, 55], who considered the
continuous time version of the model with multiplicative mutations and a single selection
coefficient. In the continuous time case the speed of evolution diverges in the infinite popu-
lation limit, because there is no bound on the number of mutations that a single individual
can accumulate in a given time. A wave moving at finite speed is obtained only if the finite
size of the population is introduced at least on the level of a lower cutoff on the frequency
distribution.

3.3.2 Solution for a Continuous Fitness Space

In this section, we explain how the above calculation can be generalized to a continuous
fitness space. We will use (8) for the distribution of selection coefficients. To connect to the
results in Sect. 3.1, we perform a change of variables such that ex = 1 + s, where x denotes
the continuous version of ks0. When s is drawn from g(β)(s), the probability density for x

becomes

g
(β)

0 (x) = β

(
ex − 1

sb

)β−1

exp

(

−
(

ex − 1

sb

)β
)

ex 1

sb

. (33)

6The more accurate value obtained by exact numerical calculation is Nc ≈ 2 × 101477.
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Setting x = ls0, the corresponding discrete distribution is

g0(l) = N (s0)β

(
es0l − 1

sb

)β−1

exp

(

−
(

els0 − 1

sb

)β
)

els0
s0

sb

, (34)

where N (s0) is the normalization constant which approaches 1 as s0 → 0. We now follow
Sect. 3.1, and calculate G(es0t ) as

G(es0t ) = N (s0)

∞∑

k=1

β

(
es0k − 1

sb

)β−1

exp

(

−
(

eks0 − 1

sb

)β
)

eks0(t+1) s0

sb

−→
∫ ∞

0
dx

(
ex − 1

sb

)β−1

exp

(

−
(

ex − 1

sb

)β
)

ex(t+1) β

sb

dx, (35)

where we take s0 → 0 with s0k = x finite. Letting y1/β = (ex − 1)/sb , the above integral,
say Wt , becomes

Wt =
∫ ∞

0
(1 + sby

1/β)t e−ydy =
∫ ∞

0
exp

(−y + t ln(1 + sby
1/β)

)
dy. (36)

Using the steepest descent method, this can be approximated as

Wt ∼ exp
(−yc + t ln

(
1 + sby

1/β
c

))
, (37)

where yc is the solution of the saddle point equation

y
1− 1

β
c + sbyc = sbt

β
→ yc ∼ t

β
. (38)

Thus, the leading behavior of lnWt becomes t ln t/β , which along with (18) yields

ln w̄(t) ∼ lnWt ∼ t ln t

β
(39)

for any finite β . On the other hand, for β → ∞ (36) yields Wt = (1 + sb)
t and hence

ln w̄(t) ∼ t .
For β = 1, a more accurate approximation can be found in Ref. [45]. Here we observe

that the speed ln w̄(t)/t increases logarithmically with time irrespective of the value of β .
The linear relation (21) for the mean number of beneficial mutations is still valid, because
the summation on the right hand side of (21) approaches to a non-negative finite number in
the continuum limit s0 → 0.

We conclude that the speed of evolution is infinite in the infinite population limit for
distributions of selection coefficients like (8), which have unbounded support. Superficially
this is reminiscent of the situation in the continuous time model with a single selection co-
efficient considered in [31, 55], but it is important to note that the reasons for the divergence
of the speed are quite different in the two cases. In the continuous time setting the speed di-
verges because the number of mutations accumulated in a given time is unbounded, whereas
in the discrete time model the divergence reflects that a single mutation can have an arbi-
trarily large effect. We will encounter a similar dichotomy in the discussion of the finite
population dynamics in the next section.
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4 Finite Populations

4.1 Genetic Drift, Fixation and Clonal Interference

Consider a single beneficial mutation with selection coefficient s > 0 which is introduced
into an initially homogeneous population. Following the evolution of the population under
WF dynamics without allowing for further mutations (U = 0), one can distinguish different
time scales. The survival of the mutation during the first few generations is very fragile, due
to the stochasticity of the reproduction process: the number of individuals carrying the muta-
tion is small and the variance is of the same order as the mean. These fluctuations are called
genetic drift. After this drift phase, either the mutation goes extinct (with some probability
1 − πN(s)) or the number of individuals becomes large enough (with probability πN(s)), so
that stochastic fluctuations can then be neglected and the evolution can be considered deter-
ministic. A mutation that has reached the latter regime is called established7 [17, 18, 40],
and it will (in the absence of other mutations) eventually take over the entire population.
This process is called fixation, πN(s) is the fixation probability, and the time needed for a
mutation that survives to spread all over the population is the fixation time tfix.

The fixation probability for the Moran model is given by [13]

πN(s) = s

1 + s − (1 + s)−(N−1)
, (40)

but for the Wright-Fisher model only approximate expressions are available [1, 54].
A widely used formula is [34]

πN(s) = 1 − e−2s

1 − e−2Ns
. (41)

For s → 0 both (40) and (41) reduce to πN = 1/N , as is obvious from a symmetry argument:
When the fitness of the mutant is equal to that of the background population, the probability
of fixation is the same for all N individuals. Both expressions show that the fixation of
deleterious mutations (s < 0) is exponentially suppressed for large N , while the fixation
probability for beneficial mutations becomes independent of N , reducing for (41) to

π∞(s) ≡ π(s) = 1 − e−2s . (42)

When s is small (as will often be the case) this can be further simplified to

π(s) � 2s, (43)

while π(s) � s for the Moran model.
In the limit N → ∞ the restriction on the size of the growing mutant clone is irrelevant

and the WF-model reduces to8 a Bienaymé-Galton-Watson branching process with a Poisson
offspring distribution of mean 1 + s. The fixation probability is then equal to the survival
probability of the branching process, which satisfies the implicit relation [1, 16, 25]

π = 1 − e−(1+s)π . (44)

7Although this terminology is mathematically ambiguous, it is widely used in the community because, we
think, it is inspirational.
8The derivation of the WF model from the branching process in Sect. 2 easily explains this connection.
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Expanding (44) to second order we recover (43) for small s, but for large s the exact fixation
probability approaches unity as 1 − π ≈ e−(1+s), in contrast to (42). In the following we
nevertheless use (42) when values of the fixation probability are required for the full range
of selection coefficients, and (43) when s is small.

The approximation by a branching process is also useful in deriving a heuristic estimate
of the population size required for a mutant clone to become established [40]. In this approx-
imation the average population size of the clone grows as (1 + s)t ≈ est . However, since this
average includes also instances where the clone goes extinct (with probability 1 − π ), the
population size conditioned on survival of the clone is larger by a factor 1/π ≈ 1/2s. Such
a clone thus looks as if it started out containing already ∼ 1/2s individuals, which is pre-
cisely the threshold size separating stochastic from deterministic growth (see e.g. [7, 10] for
a detailed treatment of this point).

In order to get some intuition about the fixation time tfix, one can look at the deterministic
evolution of a mutant of type A that appears in a population consisting of the “wild type” B .
The fitnesses can be taken as wA = (1 + s) and wB = 1. We assume that the type A has
survived genetic drift and we have a frequency at of individuals of type A and bt = 1 − at

of individuals of type B . The deterministic evolution is thus given by

⎧
⎪⎨

⎪⎩

at+1 = 1+s
w̄t

at ,

bt+1 = 1
w̄t

bt ,

w̄t = (1 + s)at + bt

(45)

and the solution is

bt = b0

a0(1 + s)t + b0
, at = 1 − bt . (46)

For a finite population of large size N , the type B can be considered extinct when bt = 1/N .
With the initial condition of a single mutant, a0 = 1/N , this expression gives the fixation
time for large N as

tfix � 2 ln(N − 1)

ln(1 + s)
� 2 lnN

s
(47)

when s is small.
For later purposes, we also need the total number of individuals of type B that have

existed during the fixation time of A. We note that

atfix−t = (1 + s)tfix−t

(1 + s)tfix−t + N − 1
= N − 1

(1 + s)t + N − 1
= bt (48)

where we have used (1 + s)tfix = (N − 1)2. We can thus conclude that, during the fixation
of type A, one has

∫
atdt � ∫

btdt , so that the total number of individuals of type B is
� Ntfix/2 � N lnN/ ln(1 + s).

This simple example shows the dependence of tfix on N when the mutation rate U is set
to 0 after the emergence of the mutant type A. If U is non-zero, the expression for tfix is valid
only as long as U is small enough, so that no new mutation emerges before the fixation of
the previous one. The average time between two mutations that survive genetic drift is

tmut = 1

NUπ(s)
� 1

2NUs
. (49)



The Speed of Evolution in Large Asexual Populations 395

Fig. 3 In the periodic selection
regime tmut � tfix and beneficial
mutations fix independently of
each other. Each blue line
represents a selective sweep

If tmut � tfix, i.e. if

N lnNU � 1 (50)

for s small, then no mutation interferes and we are in the periodic selection regime for which

vN = s

tmut
∝ s2NU. (51)

This situation is sketched in Fig. 3. The main feature of this regime is that the selective
sweeps associated with different beneficial mutations are independent and well separated in
time, and therefore the speed of evolution is directly proportional to the supply of beneficial
mutations NU .

On the other hand, if tmut and tfix are of the same order, then mutations can occur during
the fixation process of previous mutations [40, 61] and the distinction between tmut and tfix

becomes unclear. In Fig. 4, we present an example showing how the population dynamics
changes when the criterion (50) is violated. Following [22] we refer to the interaction among
beneficial mutant clones in this regime as clonal interference.

In the remaining parts of this section we present the main analytic approaches that have
been developed to compute the speed of evolution in the clonal interference regime. We
begin by considering the case where all mutations have the same selection coefficient (model
I) and then treat the case of a continuous distribution of selection coefficients9 (model II).

4.2 Model I: Single Selection Coefficient of Beneficial Mutations

4.2.1 The Crow-Kimura-Felsenstein Approach

The first attempt to compute the speed of evolution in the presence of clonal interference
is due to Crow and Kimura [8]. We present their calculation in the form given by Felsen-
stein [17], which takes into account that only established mutations contribute to the adapta-
tion process. Such mutations (with selection coefficient sb) appear in the population at rate
π(sb)NU . Assuming that a mutation was established at time t = 0, we now ask for the wait-
ing time τ until a second mutation is established in the offspring of the first. We take sb to
be small, such that π(sb) ≈ 2sb and (1 + sb)

t ≈ esbt . Then, according to (46), the frequency
at of the mutant starting at a0 = 1/(2sbN) is

at = 1

1 + (2sbN − 1)e−sbt
. (52)

The number of mutants at time t is Nat , and each mutant generates an established second
mutant with probability 2sbU per generation. We therefore need to compute the accumulated

9Note that in part of the literature [7, 10, 50] the term “clonal interference” is restricted to model II.
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Fig. 4 The frequencies of the five most populated genotypes are shown in different colors for the WF
model using the distribution (8) with β = 1, U = 10−6, sb = 0.02. The population sizes are (a) N = 104,
(b) N = 105, (c) N = 106, and (d) N = 107, respectively. From N = 105 onward, where NU lnN ≈ 1.15,
the third most populated genotype becomes visible and the distinction between tmut and tfix becomes blurred,
which signals the onset of clonal interference

number of mutants Nacc that have existed up to time t , where each individual is weighted
by the number of generations during which it has existed. Approximating the sum over
generations by an integral, this is given by

Nacc(t) � N

∫ t

0
dt ′ at ′ = N

sb

ln

[
esbt

2Nsb

+ 1 − 1

2Nsb

]

≈ N

sb

ln

[
esbt

2Nsb

+ 1

]

(53)

for Nsb � 1. The waiting time τ is then determined from the condition 2sbUNacc(τ ) = 1,
which yields the speed

vCKF
N = sb

τ
= s2

b

ln[(2Nsb)(e1/2UN − 1)] . (54)

For small N (UN � 1) this reduces to the expression (51) valid in the periodic selection
regime, while for large N a finite speed limit v∞ = s2

b/ ln(sb/U) is reached.
In writing the relation (54) it is implicitly assumed that the situation at the appearance of

the second mutation is identical to that at the appearance of the first, which is not true: the
second mutation competes against a background consisting of a mixture of mutant and wild
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type with mean fitness (relative to the wild type fitness of unity) w̄ = (1+ sb)at + (1−at ) =
1+at sb < 1+ sb . The selective advantage of the second mutant compared to the background
population is therefore larger than sb , and it will grow faster than the first mutant population.
For this reason the expression (54) is a lower bound on the actual speed. To improve on
this bound we need to take into account the coexistence of several mutant clones in the
population, which will be the subject of the next subsection.

4.2.2 The Traveling Wave Approach

As the discussion in Sect. 3.3.1 shows, the deterministic evolution of an infinite population
is well described as a traveling wave of approximately Gaussian shape. In order to extend
this approach to large but finite populations, the deterministic dynamics of the bulk of the
wave is combined with a stochastic description of the appearance of new mutants at the
high-fitness edge of the frequency distribution. This idea was first proposed by Rouzine,
Wakeley and Coffine [51] and has since been further elaborated [7, 10, 50]. In this section
we follow the particularly simple and transparent derivation presented in [3].

Motivated by the analysis of Sect. 3.3.1, we denote by ft (n) the frequency of individuals
with n mutations, and assume for this distribution the Gaussian form

ft (n) ≈ 1√
2πσ 2

exp

(

− (n − vN t/sb)
2

2σ 2

)

. (55)

Here we have used that the mean number of mutations acquired up to time t is n̄ = vN t/sb .
The speed vN and the variance σ 2 of the traveling wave are related by Fisher’s fundamental
theorem or, more generally, by the Guess relation (6). Neglecting the direct mutation contri-
bution U ln(1 + sb) because U � 1, and evaluating the selection term using the approxima-
tion χi ≈ 1 + sb(ni − n̄) (where ni is the number of mutations acquired by individual i) we
see that

vN ≈ s2
bσ

2, (56)

which is also true for the infinite population case when U � 1 (compare to (23)).
It is clear that at any finite time t , there is a maximal number of mutations nmax(t) such

that ft (n) = 0 for n > nmax(t). Let

L(t) ≡ nmax(t) − 1

sb

ln w̄(t) (57)

denote the lead of this class of fittest individuals relative to the mean population fitness [10].
Let tn be the generation when nmax = n for the first time. We assume that 〈L(tn)〉 → L0

as t → ∞ and 〈tn+1 − tn〉 → τ , with constant L0 and τ , which reflects the existence of a
stationary traveling wave with speed

vN = sb/τ. (58)

For times tn < t < tn+1, L(t) then behaves as L0 − ln w̄/sb � L0 − vN t/sb . We further
assume that, for very large N , the lead satisfies L(t)sb � 1, which implies that the loss by
genetic drift of new mutants arising from the most fit class can be neglected. Analogous to
Sect. 4.2.1, we can now compute the accumulated number of mutants in the most fit class
that have existed during the time tn < t < tn+1 according to

Nacc(τ ) =
τ∑

t=1

exp

(

s

t∑

u=1

L(u)

)

=
τ∑

t=1

e(L0sbt− 1
2 vN t2) ≈ eL0sbτ − 1

1 − e−L0sb
≈ eL0sbτ , (59)
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which is a good approximation if vNτ = sb � L0sb or L0 � 1.
The mean waiting time until the appearance of a mutant with nmax + 1 mutations is the

solution of the equation Nacc(τ )U = 1, which yields

τ ≈ 1

L0sb

ln

(
1

U

)

. (60)

Finally, we close the system of relations by noting that, as long as N is not extremely large,10

the new fittest class will most likely appear as a single individual, which implies that

1√
2πσ 2

e
− L2

0
2σ2 = 1

N
→ L0sb =

(

2vN ln
Nsb√
2πvN

)1/2

. (61)

From (56), (60), and (61), vN becomes the solution of the equation

vN �
2s2

b ln(
Nsb√
2πvN

)

(lnU)2
, (62)

which leads to the final result

vGauss
N = 2s2

b ln(N)

(lnU)2
(63)

for very large N . The logarithmic growth of the speed with N must saturate when the
infinite population limit vN = sb is approached. According to (63) this happens when
N ∼ Nc ∼ e(lnU)2/2sb , in agreement with the estimate (31). For population sizes exceeding
Nc the relation (61) is no longer valid, because the initial frequency of the fittest genotype
at tn can be much larger than 1/N once N � Nc . The existence of an absolute speed limit
vN = sb is evident from (58), because τ cannot be smaller than one generation time in the
discrete time model. For models with overlapping generations such a restriction does not ex-
ist, because a larger number of offspring can be generated within much less than an average
generation time, and the speed increases proportional to lnN for arbitrary N .

In this context, it is instructive to compare the discrete and the continuous time models
in different population size regimes. When the population size is small (NU � 1), there is a
slight difference between these two models. For example, the fixation probability for small
s is Cs with a model dependent constant C (compare (40) and (41)). Once the population
becomes large enough so that the loss of the fittest type by genetic drift can be neglected,
there is no difference between the continuous and discrete time models. However, for very
large N ≥ Nc , there is a large difference due to the restriction τ ≥ 1 in the discrete time
model.

4.2.3 Comparison to Simulations

The above derivation of the speed of evolution involves a number of rough, uncontrolled
approximations, such that the result (63) can hardly be expected to be quantitatively accu-
rate. A much more careful analysis along similar lines was presented by Rouzine, Brunet

10More precisely, N � Nc .
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Fig. 5 Comparison of the
theoretical expressions (65), (63),
(64), and (54) with simulations
using sb = 0.02 and U = 10−6.
In the inset the comparison is
extended up to N = 10300 except
for (54), which predicts a speed
limit. The algorithm used to
obtain these data is described in
Appendix

and Wilke (RBW) [50], who find the implicit expression11

lnN ≈ vRBW
N

2s2
b

(

ln2 vRBW
N

eUsb

+ 1

)

− ln

√
s3
bU

vRBW
N ln(vRBW

N /(Usb))
. (64)

A related approach, which however does not explicitly use the Gaussian shape of the deter-
ministic part of the traveling wave, was presented by Desai and Fisher [10], who find12

vDF
N ≈ 2s2

b lnN

ln2(U/sb)
. (65)

In Fig. 5, we compare the different theories with simulation results for the WF model. For
moderately large population size, (64) and (65) are of comparable quality, but for extremely
large population, as shown in the inset of Fig. 5, the predictive power of (64) is superior to
the other approaches.

In the asymptotic regime, (64) predicts that vN ∼ lnN/ ln2 lnN , but (63) and (65) predict
vN ∼ lnN . Rigorous work [64, 65] has established that the speed in the asymptotic regime
is not smaller than O(ln1−δ N) for any positive δ, which does not exclude the possibility
of a multiplicative ln2 lnN -correction. Even with the dedicated algorithm used to generate
the data in the inset of Fig. 5, it seems hardly possible to settle this issue using numerical
simulations.

4.3 Model II: Continuous Distribution of Selection Coefficients

In Sect. 4.2, we reviewed theories aimed at calculating the speed of evolution when the
selection coefficient takes a single value (model I). In this subsection, we will allow the
selection coefficient to take a continuous range of values drawn from a distribution like (8)
(model II). Unlike model I, two mutants arising from the same progenitor now have different
selection coefficients and selection is operative between these two mutations. In contrast, in
model I the competition between two mutants derived from a single progenitor is purely
stochastic, and selection operates only between clones that have accumulated a different
number of mutations.

11The speed V in Ref. [50] is vN/sb . To conform to our notation, we slightly modified (52) in Ref. [50].
12A detailed analysis of this approach can also be found in [7].
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The qualitative picture of a wave of fixed shape traveling along the fitness axis that we
developed for model I is expected to apply to model II as well, but it is more difficult to
quantify, because continuous fitness cannot be reduced to the discrete number of acquired
mutations. Two approaches have so far been proposed to deal with this problem. The first
is related to an “equivalence principle” discovered in microbial evolution experiments [27],
which suggests that a given distribution of selection coefficients can be represented by an
effective single selection coefficient along with a suitably rescaled effective mutation rate.
A heuristic scheme to implement this idea was given in [10] and tested against numerical
simulations in [20]. As one might expect, the representation by a single “predominant” se-
lection coefficient is quantitatively accurate only if the distribution is very narrow, such as
g(β) with β = 10, and it fails completely when β ≤ 1 [20].

The second approach, first proposed by Gerrish and Lenski (GL) [22], attempts to extend
the periodic selection picture into the clonal interference regime by focusing on mutations
of exceptionally large effect. Clonal interference is seen as a filter that eliminates mutations
whose effect is small enough to be superseded by a mutation of larger effect arising later in
the process. Once the size of selection coefficients of mutations that survive the competition
by other clones has been identified, along with the rate at which such mutations appear, the
speed of evolution is obtained from a simple relation similar to (51) used in the periodic
selection regime.

In the following we outline the GL approach, derive its asymptotic predictions, and com-
pare it to simulation results.

4.3.1 Gerrish-Lenski Theory

The GL-theory is based on two assumptions [22, 45]. First, the type of any individual at any
time is either the wild type or a mutant derived directly from the wild type. The contribu-
tions from multiple mutations arising from an extant mutant are neglected. Since the fixation
of a mutation under this assumption becomes a renewal process [21], we will refer to this
assumption as the renewal assumption. Second, the loss of a beneficial mutation by stochas-
tic sampling error when rare (genetic drift) is determined solely by its selection coefficient
compared to the wild type. Other beneficial mutations do not play any role in determining
the fate of the mutation at early times. We will refer to this assumption as the assumption of
establishment.

The picture underlying these two assumptions is that the adaptive process can still be de-
composed into separate selective sweeps in which a mutation grows in a fixed background
and eventually takes over the population (compare to Fig. 3). A signature of this kind of
dynamics is a step-like increase of the mean fitness. As can be seen in Fig. 4, this step-like
behavior is pronounced for small populations in the periodic selection regime. However, as
the population size increases, the mean fitness becomes more and more smooth, see Fig. 6,
although distinct steps still occur when a mutation of exceptionally large strength appears.
Thus, the GL approach is expected to be useful in a restricted range of population sizes,
which goes slightly beyond the periodic selection regime. It is similar in spirit to the Crow-
Kimura-Felsenstein approach reviewed in Sect. 4.2.1, which also successfully captures the
slowing down of adaptation near the onset of clonal interference but fails for larger N (com-
pare to Fig. 5).

To formulate the GL-theory quantitatively, we make use of two functions introduced
previously: the probability distribution g(s) of selection coefficients (like g(β) in (8)), and
the probability π(s) for the fixation (or, equivalently, the establishment) of a mutation of
strength s. By the assumption of establishment, the distribution of the mutations that can
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Fig. 6 Plots of mean fitness corresponding to the two panels on the right hand side of Fig. 4. The population
sizes are (a) 105 and (b) 107. Although assumptions of the GL approach are not strictly applicable, one
observes regions where the mean fitness behaves in a step-like fashion

spread in the population after the initial fluctuations and are really competing is then given
by13 π(s)g(s).

For a mutation with selection coefficient s to be fixed, it is necessary that no fitter muta-
tion is established during the time required for the first mutation to fix. The expected number
of established fitter mutations that appear during this time is

λ(s) = (NUtfix(s)/2)

∫ ∞

s

duπ(u)g(u) (66)

where14 tfix(s) is given in (47), the factor 1/2 comes from the renewal assumption [see also
discussion below (48)], and the integral gives the probability that the selection coefficient
of an established mutation is larger than s. Note that the renewal assumption prohibits a
secondary mutation with selection coefficient s ′′ arising in the offspring of a primary muta-
tion s ′ with s ′ < s but s ′ + s ′′ > s, which would make (66) much more complicated. Hence,
within the GL approximation the probability of not encountering any fitter mutation during
fixation is exp(−λ(s)) and, accordingly, the fixation probability of a mutation with selection
coefficient s becomes

Pfix(s) = π(s)g(s) exp

(

−NU lnN

ln(1 + s)

∫ ∞

s

π(u)g(u)du

)

. (67)

In words, for a mutation with selection coefficient s to be fixed, it must first survive genetic
drift (with probability π(s)g(s)), then should outcompete all other mutations (with probabil-
ity exp(−λ(s))). Thus, the substitution rate (the number of fixed mutations per generation)
is

keff = NU

∫ ∞

s=0
Pfix(s)ds. (68)

13Without the assumption of the establishment, the survival probability of a mutation should also depend on
the population structure at the time when this mutation arises.
14Note that in previous work on the GL approach the expression tfix = 2 lnN/s was used irrespective of the
size of s [22, 45, 61]. We will get back to the consequences of this replacement in Sect. 4.3.2.
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Fig. 7 Comparison of the GL theory with the simulation results of the WF model for U = 10−6 and mean
selection coefficient �(1 + 1/β)sb = 0.02 for (a) β = 1

2 , (b) β = 1, and (c) β = 2. Panel (d) shows the data
from (a)–(c) in double logarithmic scales

To calculate the speed vN , we need the mean selection coefficient of fixed mutations which
is readily obtained as

seff =
∫

sPfix(s)ds
∫

Pfix(s)ds
. (69)

Along with keff this determines the speed according to15 [61]

vGL
N = keff ln(1 + seff). (70)

In Fig. 7, we compare (70) to simulations using g(β) with three different values of β .
The integrals in (67), (68) and (69) were evaluated numerically. We see that the GL ap-
proach is remarkably accurate also beyond the periodic selection regime, as becomes ev-
ident by comparing the double-logarithmic graph in Fig. 7(d) to the corresponding Fig. 5
for model I. However the deviations grow as N increases, in particular for β = 2, where
the GL-prediction shows a negative curvature in lnN which is not present in the simula-
tion data. We will return to this point at the end of the next subsection. As the numerical

15The reader may wonder why ln(1 + seff) on the right hand side of (70) is not replaced by the average of
ln(1 + s) with respect to Pfix(s). For small seff the difference between the two is obviously negligible, but
the same is true when seff � 1, because then Pfix becomes very narrow due to clonal interference. For a
numerical test of (70) see [45].
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scheme employed for model I relies on the discreteness of the fitness space (see Appendix),
we have no information about the behavior of vN for very large N . Since we have shown in
Sect. 3.3.2 that the speed of evolution is infinite in the infinite population model, we merely
know that (in contrast to model I) limN→∞ vN = ∞.

4.3.2 Asymptotic Behavior of the GL Theory

Although we cannot analytically evaluate the expression for vN predicted by the GL ap-
proach, an accurate asymptotic approximation can be derived, which is the topic of this
section. Throughout the distribution g(β) of selection coefficients is used. The calculation
follows the idea presented (for β = 1) in Ref. [45]; see also Ref. [61]. The only difference
is that tfix = 2 lnN/ ln(1 + s) is used rather than 2 lnN/s, which will turn out to affect the
conclusion significantly.

The integrations involved in the GL theory take the form

I [A;n] =
∫ ∞

0
dssnf (s) exp(−Ah(s)), (71)

where f (s) = π(s)g(β)(s), h(s) = ∫ ∞
s

f (u)du/ ln(1 + s), and A = NU lnN . Note that h(s)

is a decreasing function with the range [0,∞]. By the change of variable y = h(s), the above
integral becomes

I [A;n] =
∫ ∞

0
(y)e−Aydy, (72)

where

(h(s)) = sn f (s)

|h′(s)| = sn ln(1 + s) + sn

1 + s

(
d

ds
lnh(s)

)−1

. (73)

To arrive at (72), we have used f (s) = −(d/ds)(ln(1 + s)h(s)) and the fact that h(s) is
a (monotonic) decreasing function. As A → ∞, I [A;n] is dominated by the contribution
around y = 0, or equivalently around s = ∞. When s is very large, we can approximate
π(s) ≈ 1 and hence h(s) ∼ exp(−(s/sb)

β)/ ln s. Hence for large s, we can approximate
s = sb(− lny)1/β (y � 1), and

(y) ≈ sn ln s − sn−1 sb

β

( sb

s

)β−1 ≈ sn
b (− lny)n/β ln(ln(1/y))/β, (74)

where we have kept only the leading order term. Hence

I [A;n] ≈ sn
b

β

∫ ∞

0
(− lny)n/β ln ln(1/y)e−Aydy ≈ sn

b

Aβ
(lnA)n/β ln lnA. (75)

The substitution rate is then

keff = NUI [NU lnN;0] = ln ln(NU lnN)

β lnN
, (76)

which, as N → ∞, approaches 0 for any β . The asymptotic behavior of the speed is

vGL
N = keff ln

(

1 + I [A;1]
I [A,0]

)

∼ (ln lnN)2

β2 lnN
, (77)
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Fig. 8 Comparison of the GL
theory using
tfix = 2 lnN/ ln(1 + s) (symbols)
with that using tfix = 2 lnN/s

(line) for U = 10−6, sb = 0.02,
and β = 1. Inset: Close up of the
boxed area. As anticipated by the
asymptotic analysis, the speed
decays, though slowly, with N

which also approaches 0 as N → ∞.
This asymptotic behavior is easily understandable from an extremal statistics argument.

The maximal mutation coefficient smax observed over M mutation events is given approxi-
matively as a solution of

Prob {s > smax} =
∫ ∞

smax

g(u)du = exp
(−(smax/sb)

β
) � 1

M
. (78)

Following the GL hypothesis, the selection coefficient that gets fixed has to be the maximum
of all selection coefficients that appear within its own fixation time, i.e. one has to consider
a typical number

M ∼ NUtfix ∼ NU lnN/ ln(1 + smax) (79)

of mutations. Thus, the leading behavior of smax becomes smax ∼ sb ln1/β A ∼ sb ln1/β N , the
effective substitution rate is given by (up to leading order)

keff ≈ 1/tfix(smax) ∼ ln ln(N)

β lnN
(80)

as in (76), and the velocity is the same as in (77).
The asymptotic behavior obtained in this section is completely different from previous

reports16 [22, 45, 61]. The reason is clearly the factor ln(1 + s) in the denominator of tfix(s),
which is very different from s when seff � 1. However, this effect is only relevant when N

is extremely large. As Fig. 8 shows, the true asymptotic behavior (77) is approached only
when N � 10100 for U = 10−6 and sb = 0.02 with β = 1, and the difference between using
ln(1 + s) and s in tfix(s) is small when N ≤ 1020. So for realistic values of N , replacing
ln(1 + s) by s can provide a good approximation for the speed.

In fact, if the mutant fitness is derived from the parental fitness by multiplication with es

rather than with 1 + s, which would correspond to a continuous time picture, the fixation
time is 2 lnN/s for all s. The speed is then given by the expression vN = keffseff used in
Ref. [22], rather than by (70). The leading asymptotic behavior of GL theory within this
scheme can be obtained along the lines of [45] or, more directly, by adapting the extremal
statistics argument given above. Since the leading behavior of smax is the same as before, the

16Note that in the original paper of Gerrish and Lenski [22], it was erroneously concluded that vN approaches
a finite “speed limit” for N → ∞.
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Fig. 9 Fixation of multiple mutations in a population of size N = 5. At time t , four types are present, and
only the red mutation is fixed (= shared by all individuals). In the next generation, the individuals with
one and two mutations leave no offspring, and consequently the blue and the green mutation go to fixation
simultaneously

asymptotic behavior becomes

keff ∼ smax/ lnN ∼ sb ln1/β−1 N, vGL
N ∼ s2

b ln2/β−1 N. (81)

Thus the graph of vN versus lnN within GL theory is positively curved when β < 1 and
negatively curved when β > 1, as is visible in Figs. 7(a)–(c). The simulation results for
β = 2 do however not share this feature, and lie distinctly above the GL prediction for
large N . In the next subsection we elaborate on this observation.

4.3.3 Importance of Multiple Mutations

It is instructive to compare (81) to the result vN ∼ s2
b lnN obtained for model I in Sect. 4.2.

Evidently, the speed in model I should be minimal among all distributions g(s) with the
same mean selection coefficient, which implies that vN should increase at least as fast as
lnN also for model II.17 However, according to (81) vN grows more slowly than lnN when
β > 1, and even decreases with N when β > 2. Moreover, the rate of substitution decreases
with increasing lnN for β > 1, although we know that k → 1 in the infinite population limit.

This is not really surprising, as the GL approach takes into account only the mutations of
largest effect, ignoring the cumulative effect of multiple mutations of average effect which
drive the dynamics in model I. On the basis of (81), one might speculate that the evolu-
tionary process is dominated by large, extremal selection coefficients when β < 1, and by
multiple mutations of typical effect when β > 1. This could also account for the breakdown
of the “predominant mutation” approach for β < 1 [10, 20]. Interestingly, the exponential
distribution of selection coefficients, which is most widely used in this context [22, 43, 45,
61], would then turn out to represent the marginal case separating the two regimes.

A quantitative measure of the importance of multiple mutations in the evolutionary dy-
namics can be obtained by asking how many mutations typically go to fixation in a single
fixation event. The way in which the fixation of different mutations can become linked is
illustrated in Fig. 9. It was observed numerically in [45] (for model II with β = 1) that
the probability Jn of n mutations fixing in a single event is well described by a geometric
distribution,

Jn = (1 − q)n−1q. (82)

The left panel of Fig. 10 shows that the same relationship holds for model I. The parame-
ter 1/q is the mean number of simultaneously fixed mutations, and it increases with N in a

17For the purpose of this discussion we ignore the saturation of the speed that occurs at extremely large N in
model I.
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Fig. 10 Left: Distribution of the number of fixed mutations per fixation events for β = ∞ with sb = 0.02 and
U = 10−6 in semi-logarithmic scales. From left to right, the population sizes are 103, 104, 105, 106, 107,
and 108. Clean geometric distributions are observed. Right: Mean number of fixed mutations per fixation
event (1/q) as a function of population size

logarithmic fashion (right panel of Fig. 10). As expected, multiple mutations are more preva-
lent for larger β , but there does not seem to be any qualitative difference in the behaviors
for β < 1 and β > 1. An analytic understanding of the relation (82) is so far only available
for the case without selection, where 1/q increase linearly with population size N [59, 60].
We note, finally, that the time series of fixation events has interesting statistical properties
[21, 45], which are however outside the scope of the present article.

5 Summary and Outlook

In this paper we have reviewed some aspects of evolutionary dynamics in the arguably sim-
plest setting: A population of fixed size N evolving in a time-independent environment,
supplied by independently acting beneficial mutations at a constant rate U . The quantity
of primary interest is the speed vN of logarithmic fitness increase, which is determined by
the parameters N and U and by the probability distribution g(s) of mutational effects with
typical scale sb .

On a qualitative level, one finds three distinct evolutionary regimes. For small popula-
tions, in the sense of (50), beneficial mutations are well separated in time and sweep through
the population independently. As a consequence, the speed vN is proportional to NU . For
larger populations the clones generated by different mutations interfere and the increase of
the speed is only logarithmic in N . Finally, in the limit of infinite populations, the speed
saturates to a finite value (for the discrete time WF model). In the last regime the problem
can be solved exactly, but, due to a conspiracy of the small parameters U and sb , this de-
scription applies only to hyperastronomically large populations (see (31)). Real microbial
populations of the kind used in evolution experiments typically operate in the intermediate
clonal interference regime, which has been the main focus of the article.

Most work on the finite population problem has considered the case of a single selection
coefficient (model I), where fitness is discrete. This offers considerable advantages for both
approximate and rigorous analytic studies as well as for numerical simulations which are
able to explore the asymptotic regime where lnN (and not just N ) is large. A summary
of the present state of affairs with regard to analytic approximations for the speed is given
in Fig. 5. The case of a continuous distribution of selection coefficients (model II) is less
well understood. Despite its conceptual shortcomings, the Gerrish-Lenski approximation
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provides a quantitatively rather satisfactory description of the speed over the experimentally
relevant range of population sizes (see Fig. 7), although it fails completely when the infinite
population limit is approached. We have argued above that model I should provide a lower
bound on the speed of evolution for general distributions of selection coefficients, which
implies that the speed increases at least as fast as lnN also for model II, and possibly faster
for distributions g(s) that decay more slowly than exponentially.

The unifying paradigm used throughout the article is the description of the evolution-
ary process in terms of a traveling wave of constant shape moving along the fitness axis
[51, 55]. This idea has proved to be successful also in the related but distinct context of
competitive evolution, where selection is decoupled from reproduction [37, 47]. Competi-
tive evolution models mimic a process of artificial (rather than natural) selection, where the
character (“trait”) of the types that is being selected is not the reproductive ability (fitness)
of individuals. In one variant, individuals are assigned a scalar trait which is handed on to
the offspring subject to random mutations. In one round of reproduction, each individual
creates the same number of offspring, and subsequently the N with the values of the trait
are selected for the next round [6]. This model falls into the large class of noisy traveling
waves of Fisher-Kolmogorov type [5, 44, 53], which are much better understood than the
problems described in the present article. Apart from accurate analytic approximations to the
wave speed, also the genealogies of populations can be addressed, which display an interest-
ing relation to the statistical physics of disordered systems [5]. In contrast, the genealogical
properties of the WF model with selection are largely unknown.

Although the models described here are of considerable interest for the interpretation
of evolutionary experiments [11, 14, 27, 48, 52, 55, 57], the reader should not be left with
the impression that they provide a description that is realistic in all or even most respects.
For example, the assumption of a constant supply of beneficial mutations cannot be true at
arbitrarily long times, and indeed the rate of fitness increase is generally observed to slow
down in experiments [2, 58]. One way to take this effect into account is by modeling the
genotype as a sequence with a finite number of sites at which mutations can take place [32].

Another approach, known as Kingman’s house-of-cards model [36], retains the infinite
number of sites approximation but modifies the basic mutation step (4) such that the mutant
fitness w′

i itself is drawn from a fixed fitness distribution g̃(w). The probability of choosing
a beneficial mutation with w′

i > wi then decreases as the mean fitness grows, and corre-
spondingly the logarithmic fitness increases in a sublinear manner determined by the tail of
g̃ [46]. In fact this problem turns out to be simpler than the one discussed in the present
article, because the diminishing rate of beneficial mutations (U → 0) drives the system into
the periodic selection regime where selective sweeps can be treated as independent.

Kingman’s assumption that the fitness of the offspring is uncorrelated with that of the
parent is hardly more realistic than the assumption of independent fitness effects of different
mutations which underlies (4). The few examples available so far indicate that real fitness
landscapes lie between these two extremes [49, 56], which implies that the structure of the
type space cannot be ignored. Like the modeling of evolutionary dynamics which we have
discussed in this article, the mathematical characterization of such fitness landscapes offers
a host of challenging problems that can be fruitfully explored by statistical physicists.

Acknowledgements This work was supported by DFG within SFB 680, and by the Alexander von Hum-
boldt foundation through a fellowship to DS. We acknowledge the kind hospitality of the Lorentz Center,
Leiden, where part of this paper was written.
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Appendix: Simulating the Wright-Fisher model

This Appendix is devoted to explaining how we simulated model I for population sizes up
to 10300, as displayed in Fig. 5. The algorithm is based on that of [45], which we describe
first. As in Sect. 3, we denote the frequency of individuals with fitness ensb at generation t by
ft (n). Assume that at time t there are k + 1 distinct fitness values present in the population,
i.e. ft (n) = 0 if n ≤ n0 or n > n0 + k. It is straightforward to see from (3) that the number
mi of individuals having ni ≡ n0 + i (i = 1, . . . , k + 1) mutations at generation t + 1 is
determined by the multinomial distribution

p(m1, . . . ,mk+1) = N !
k+1∏

i=1

p
mi

i

mi ! , (83)

where

pi = ft (ni)(1 − U)
eni sb

w̄(t)
+ ft (ni − 1)U

e(ni−1)sb

w̄(t)
. (84)

Note that the effect of mutations is already implemented in the above algorithm, which is
equivalent to the WF model in Sect. 2 (first selection then mutation). Since this multinomial
distribution can be written as

p(m1, . . . ,mk+1) =
k+1∏

j=2

(
Ni

mi

)

(1 − qi)
Ni−mi q

mi

i , (85)

where

qi = pi
∑i

j=1 pj

, (86)

Ni = Ni+1 − mi+1 and Nk+1 = N , the multinomially distributed random numbers can be
generated by drawing binomial random numbers k times. To be specific, we first draw mk+1

from the distribution
(

N

mk+1

)

(1 − qk+1)
N−mk+1q

mk+1
k+1 , (87)

then the mj are determined in the order of j = k, k −1, . . . ,2 by the conditional distribution

(
Nj

mj

)

(1 − qj )
Nj −mj q

mj

j . (88)

Finally, m1 is given by N1 = N − ∑k+1
j=2 mj .

Since it is not possible to generate integers as large as 10100 in present day computers, in
our simulations of very large populations we treat the mj as real numbers. To be specific,
we use the following algorithm. If Nj < 109, we generate binomially distributed integer ran-
dom variables. If Nj > 109, we first check if the mean m̄j ≡ Njqj is larger than prescribed
number M which was set as 100 in our simulations.18 If m̄j < M , we generate Poisson dis-
tributed random numbers with mean m̄j . Since Nj is sufficiently large and qj < 10−7, the
Poisson distribution accurately approximates the binomial distribution in this situation. On

18The results do not depend on this choice.
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the other hand, if m̄j > M , we invoked the central limit theorem to approximate the bino-
mial distribution by a Gaussian; that is, mj = m̄j + √

Njqj (1 − qj )N(0,1), where N(0,1)

is a normally distributed random number with mean 0 and variance 1.
Needless to say, the above algorithm is successful up to hyperastronomical population

sizes because the fitness space is quantized and the number of possible fitness values at each
generation, determined by the lead L0, increases only as ∼ lnN . The direct application of
this method to model II is not feasible, because in that case the number of different fitness
values is at least NU .
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